

15. Evaluate: $Lt_{x\to 0} \frac{5\sin x - \sin 5x}{5(\cos x - \cos 5x)}$ 16. Evaluate: (i) $L\left(\frac{\cos 2t - \cos 3t}{t}\right)$ and (ii) $L^{-1}\left(\frac{s}{(s+2)^2}\right)$ 17. Find the Laplace transform of $f(t) = \begin{cases} 1 & ; & 0 < t < b \\ -1 & ; & b < t < 2b \end{cases}$ 18. Find the mean, variance and standard deviation of the following distribution:

Х	3	8	12	
f(x)	1/3	1/2	1/6	

SECTION C

Answer ANY TWO questions:

 $2 \times 20 = 40$

19. (a) When x is small, show that $\sqrt{x^2 + 4} - \sqrt{x^2 + 1} = 1 - \frac{1}{4}x^2 + \frac{7}{64}x^4$ nearly. (b) Verify Cayley-Hamilton theorem for $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{pmatrix}$. (10+10)

20. (a) Separate $\tan^{-1}(x+iy)$ into real and imaginary parts.

(b) If $u = \log \tan(\frac{\pi}{4} + \frac{\theta}{2})$ show that (i) $\tanh \frac{u}{2} = \tan \frac{\theta}{2}$ (ii) $\theta = -i\log \tan(\frac{\pi}{4} + i\frac{u}{2})$. (10+10)

21. (a) Solve:
$$y'' + 2y' + 5y = 4e^{-t}$$
 given that $y(0) = y'(0) = 0$
(b) Find the angle of intersection of the curves $r = \frac{a}{1 + \cos \theta}$ and $r = \frac{b}{1 - \cos \theta}$.
(10+10)
22. (a) Find the nth derivative of $\frac{x^2}{(x+1)^2(x+2)}$.

(b) The probability that John hits a target is p = 1/4. He fixes n = 6 times. Find the probability that he hits the target: (i) exactly 2 times (ii) more than 4 times (iii) at least once. (10+10)
